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ABSTRACT 

This thesis demonstrates that it is reasonably easy to subvert an information 

system by inserting software artifices that would enable a knowledgeable attacker to 

obtain total and virtually undetectable control of the system.  Recent security incidents 

are used to show that means, motive, and opportunity exist for an attack of this nature.  

Subversion is the most attractive option to the professional attacker willing to invest 

significant time and money to avoid detection and obtain a significant payoff.   

The objective here is to raise awareness of the risk posed by subversion so that the 

decision makers responsible for the security of information systems can make informed 

decisions.  To this end, this work provides a complete demonstration of a subverted 

system.  It is shown how a few lines of code can result in a very significant vulnerability.  

The responsibility to defend information systems cannot adequately be met without 

considering this threat. 

Addressing this threat gets to the very nature of the security problem, which 

requires proving the absence of something – namely, a malicious artifice.  Several 

techniques for demonstrating security are shown to be inadequate in the face of this 

threat.  Finally, a solution is presented with a proposal for future work. 
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EXECUTIVE SUMMARY 

“Aesop, who used animals to illustrate human foibles, told of the 
eagle that died from an arrow, the shaft of which had been feathered with 
one of its own plumes, to make the point that ‘We often give our enemies 

the means of our own destruction.’ ”1 
 
Information technology has made possible some of the most astonishing 

achievements in the history of the modern world.  Its usefulness has paved the way for its 

introduction into nearly every facet of society to the point that we are now inescapably 

dependent upon it.  The ironic fact that that which gives us a significant edge over our 

adversaries also carries within it one of our most ominous vulnerabilities is now widely 

accepted and has resulted in an effort known as Critical Infrastructure Protection (CIP).  

Information security plays an important role in CIP but one significant threat that has 

been ignored for nearly twenty years is the threat of information system subversion.  

System subversion involves the clandestine and methodical undermining of a system by 

planting artifices (trap doors) in it that bypass its security controls.  This method of attack 

is the choice of the professional attacker (such as a nation state or a large company 

engaging in corporate espionage) who gains access at some point in the system lifecycle 

and plants the artifice.  This artifice grants only those with knowledge of both its 

presence and how to trigger it, virtually undetectable and potentially unrestricted access 

to the system.  The professional attacker is motivated by the prospect of significant 

payoff that may not be realized until several years in the future – often at a time when the 

victim’s dependence upon the proper functioning of the system is crucial. 

Perhaps the closest relative to subversion is the Trojan Horse attack in which the 

attacker sends the victim a program in the hopes that the victim will run it on his system.  

When he does so, the program covertly performs some additional malicious function.  

There are three primary factors that distinguish this from subversion.  First, the Trojan 

Horse requires a legitimate user to run it while the artifice in subversion does not.  

Second, the Trojan Horse program exploits the level of privilege associated with the 

individual that runs it whereas the artifice (typically embedded in the system) simply 
                                                 

1 From Grant, P. & Riche, R. (1983).  The Eagle’s Own Plume. Proceeding of the U. S. Naval 
Institute, July, 1983. 
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bypasses these privilege checking controls.  Finally, the artifice in subversion typically 

has some type of activation and deactivation mechanism. 

Recent trends indicate recognition of the importance of assurance in information 

systems, but none of the commonly available commercial systems or solutions even 

approach the level of assurance required to address the subversion threat.  Firewalls, 

intrusion detection systems, encryption, and other similar defense layers all fail in the 

face of subversion.  Moreover, methods used to assess the security of systems such as 

security test and evaluation (ST&E), red teams (tiger teams), and penetration testing are 

unable to protect against this threat.  The only known way to protect against the 

subversion threat is with high assurance systems that offer verifiable protection.  This is 

not the type of assurance being associated with the majority of modern commercial “high 

assurance” systems, but the type found in systems designed formally and evaluated 

through formal audits of the system against a sound set of criteria.  Systems built in such 

a way offer the unique ability to verify that the security mechanisms are both sound and 

complete even after they have been built. 

Press reports over the past year provide ample evidence that the means, motive, 

and opportunity for an attack of this nature exist.  Certainly, decision makers could be 

considered negligent if they ignore the threat of subversion in systems upon which the 

defense and critical infrastructure of the United States depend.  The computer security 

community understood the subversion threat as early as the 1970’s and by the mid 

1980’s, vendors were building systems with assurances to defend against it.  However, 

these systems saw little application (even in the Department of Defense) as the society 

was not yet so inescapably dependent on information technology, the threat was not so 

mature, and there were strong pressures to use products of the commercial market that 

favored functionality and features over security and assurance.  There has been very little 

work in this area since this time. 

This thesis demonstrates that it is relatively easy to subvert a system (given access 

at some point during its lifecycle) in a way that can cause significant harm and includes 

two example artifices (one of which is implemented).  Finally, it points out that lessons 

learned in designing systems to withstand subversion are in danger of being lost and 

proposes a project to educate and train a new generation of security professionals. 

 xii 



I. INTRODUCTION 

A. PURPOSE OF STUDY 
The purpose of this paper is to heighten awareness of the threat of system 

subversion and demonstrate that, unless this threat is addressed where appropriate, the 

responsibility to provide proper security cannot adequately be met.  To this end, a brief 

examination of the threat is provided followed by several real world and publicly 

reported incidents that together demonstrate the means, motive, and opportunity for an 

adversary to conduct this type of attack against the United States.  Finally, a working 

example of a subverted operating system is constructed by placing an artifice in the 

kernel.  The effect that this might have on the larger system is demonstrated in the form 

of a Network File Server, which will allow the attacker who has knowledge of the artifice 

full access to the server. 

The security problem is unique and difficult. It involves proving not only the 

presence of proper functional security controls, but also proving the absence of anything 

that can undermine these controls.  After-the-fact testing and certification cannot provide 

the level of protection require to counter subversion.  The only way to counter this threat 

is to build systems in such a way that the insertion of an artifice is both detectable and is 

guaranteed to be discovered during formal audits of the system against a sound set of 

criteria.  This approach will be presented following the examples. 

B. DEFINITION 

Meyers (1980) defines subversion of a computer system as “… the covert and 

methodical undermining of internal and external controls over a system lifetime to allow 

unauthorized or undetected access to system resources and/or information.”  At the time 

of this writing, an increase in reliance on commercial off-the-shelf (COTS) automated 

data processing systems was cited as cause for concern over the protection of information 

of varying degrees of sensitivity in the presence of multiple users with varying levels of 

trustworthiness.  The contemporaneous solution to this “classical security problem” was 

the security kernel – a small analyzable portion of a trusted operating system that was 

protected and responsible for enforcing security policy on the system.  It was noted that 
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unless the threat of subversion was addressed, this security kernel technology could never 

hope to provide a solution to the security problem. 

The environment has changed significantly since 1980.  In many ways, Meyers 

foretold the environment that exists today.  Products are vastly more complex and 

interrelated making it much easier to hide artifices (Anderson, 1972).  Systems (such as 

web servers) now provide simultaneous service to large numbers of completely unknown 

and untrusted users.  Reliance on information technology (IT) has skyrocketed - every 

individual and almost every aspect of modern life are affected by computers in some way 

even if not in a direct relationship.  There is so much that must be considered when 

building a system that it is easy to overlook the most fundamental issues.   

For instance, lessons had been learned in the early 1970’s that no ad hoc fix or 

security patch could provide security if the operating system could not be trusted 

(Anderson, 1972 and Schell, Downey, and Popek, 1973).  While it is uncommon today 

for a vendor to be foolish enough to claim a silver bullet solution, there are a significant 

number of these ad hoc security products available to throw at the problem.  One can 

easily be lulled into a false sense of security by employing an assortment of products in a 

so-called “layered defense.”  However, the lessons of the past must not be forgotten.  

High assurance systems (i.e. systems with “verifiable protection”) are the only known 

technology that can address the threat of subversion and subversion is a threat that 

deserves attention. 

C. HISTORICAL BACKGROUND 
The focus of concern in the field of computer and information security has 

meandered through a seemingly infinite list of threats.  In the beginning, computers ran a 

single program and the threat could be addressed with physical controls.  Operating 

systems brought capabilities to reduce the time that these expensive machines stood idle 

by enabling them to share resources and run several programs “simultaneously.”   

Protecting data and resources became a much more difficult problem in these shared-use 

systems as indicated in the Air Force Computer Technology Planning Study (Anderson, 

1972): 
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... The nature of shared-use multilevel computer security systems presents 
to a malicious user a unique opportunity for attempting to subvert through 
programming the mechanism upon which security depends (i.e., the 
control of the computer vested in the operating system)…The threat that a 
single user of a system operating as a hostile agent can simply modify an 
operating system to by-pass or suspend security controls, and the fact that 
the operating system controlling the computer application(s) is developed 
outside of USAF control, contribute to the reluctance to certify (i.e., be 
convinced) that contemporary systems are secure or even can be secured. 

The security kernel was offered as a proposed solution by providing domain 

separation and addressing the issues of object reuse, covert channels, and other avenues 

of attack on confidentiality and integrity that resulted from this development.  Anderson 

(1972) describes the security kernel as follows:   

The objective for a security kernel design is to integrate in one part of an 
operating system all security related functions.  This is for the purpose of 
being able to protect all parts of the security mechanism, and to apply 
certification techniques to the design. 

This report also introduced the concept of the Reference Monitor (RM) the function of 

which is to validate that all references made by subjects (active entities in the system) to 

objects (passive entities) are authorized for the specific mode of access requested.  In 

other words, whenever a process requests access of a particular mode (e.g. read/write) the 

RM must validate that the subject is authorized to reference the object in that mode.  The 

report introduced the term Reference Validation Mechanism (RVM) as the 

implementation of the concept and stipulated the following three enduring requirements: 

• The RVM must be tamper proof; 

• The RVM must always be invoked; and 

• The RVM must be small enough to be the subject of analysis and tests to 
assure that it is correct. 

The RVM would be one component of the security kernel.   

In 1979, Air University Review published an article (Schell, 1979), which 

presented evidence of weaknesses in the security controls of contemporaneous systems 

that were assumed to be secure by operators.  The author compared the use of these 

systems under the false assumption that they were secure to Japan and Germany’s 

confidence that their encryption systems could not be broken in World War II.   

 3 



In the 1980’s, the DoD conducted more studies to address the computer security 

problem.  In 1983, “The Eagle’s Own Plume” (Grant and Riche), illustrated the threat in 

the context of the increased use of electronics and computers in Naval Weapon’s systems.  

The article provided hypothetical examples of how artifices inserted into weapons or 

weapon support systems by U.S. adversaries might cause failed communications and 

erroneous presentation of information and how this could negatively impact a conflict 

scenario.  At approximately the same time, criteria for evaluating the security assurances 

of computer systems were being developed.  These criteria were published in 1985 in the 

Department of Defense Trusted Computer Evaluation Criteria (TCSEC) or “Orange 

Book” (DOD 5200.28-STD, 1985).  The RVM discussed above was incorporated into the 

criteria beginning at Division B (Mandatory Protection).  Subsequent work resulted in an 

entire series of publications (commonly called the “Rainbow Series”) which extended the 

criteria for application to networks and databases and amplified various aspects of 

functional and assurance requirements. 

Increasingly, systems were linked together into networks and ultimately the 

Internet in the 1990’s.  With the Internet in particular, the number and sources of threats 

soared as hardware decreased in cost, the pace of software product development 

accelerated, and the number of users with the ability to connect within the network 

increased.  To counter these new threats, cryptography, intrusion detection systems, 

virtual private networks, and firewalls took the forefront as the must-have tools for 

protecting information systems.   

The end of this cycle appears to be nowhere in sight; new technologies and 

products constantly emerge to address the new threats that appear in the rear-view mirror 

only to be followed by yet another newly discovered vulnerability or exploitation 

technique.  The recent creation of the Common Vulnerabilities and Exposures (CVE) List 

(http://www.cve.org) is testament to the magnitude of the problem – vulnerabilities are so 

prevalent, that a vulnerability taxonomy and management system is required just for the 

security community to communicate effectively about the problem. 

Yet, with all this attention to computer and network security, with all the various 

security technology available today, the threat of subversion remains unchecked and 
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largely ignored.  These new technologies simply cannot counter the threat of subversion.  

Loscocco, et al (1998) provide excellent examples of how these technologies fail to 

provide protection when it is falsely assumed that the underlying system is secure.  It is 

not the case that we do not know how to address this threat.  In fact, since the early 

1970’s, we have had available technology and procedures that, if applied properly, will 

eliminate the most serious threats of subversion.  These will be discussed later. 

D. THE PROFESSIONAL ATTACKER 

Subversion is the technique of choice for the professional attacker.  In order to 

fully understand the subversion threat and appreciate why it deserves attention, the 

distinction between the professional and amateur attacker must be understood.  The 

professional attacker is distinguished from the amateur by objectives, resources, access, 

and time.   He is very concerned about avoiding detection and this will therefore be one 

of his primary objectives.  Amateur attackers are often motivated by a desire for notoriety 

or simple curiosity as much as for gaining access.  The problem for them becomes 

maintaining selective anonymity relative to the observers – allowing some observers to 

attribute the attack to them while denying the same ability to law enforcement or other 

authorities.   

The professional will often be well funded and have adequate resources to 

research and test the attack in a closed environment to make its execution flawless.  A 

flawless attack will attract less attention than one that must be mounted numerous times 

due to errors or bugs. 

As described by Meyers (1980), the professional attacker is one who understands 

the system lifecycle.  Using this knowledge, he may construct a subverted environment 

by controlling the efforts of a development team without the individuals realizing that 

they are involved in the subversion activity.  In a large system with complex 

dependencies between modules (as is common in today’s operating systems) the 

opportunities for this approach are clearly evident.  

Coordinated attacks are also the mark of a professional.  These types of attacks 

are launched from multiple systems simultaneously at a single target and can achieve a 

big pay-off in a short period of time.  They also complicate efforts to discover the origin 
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of the attack, helping to conceal the identity of the attacker.  The distributed denial of 

service (DDOS) attacks in which large numbers of vulnerable system are used by an 

attacker as “zombie” platforms to attack a common target, while not a professional 

attack, illustrate this concept. 

Finally, the professional is willing to invest a significant amount of time in both 

the development of the artifice as well as its use – possibly waiting years before reaping 

the benefits of the act of subversion.  This final characteristic demonstrates another facet 

of the professional attack.  The subverter (who plants the artifice) may be – in fact, 

usually will be - a different individual than the attacker.  In this scenario an attacker may 

have paid someone else to perform the subversion and will at some point in the future, 

activate the artifice and attack the system.  The artifice may be designed in a general 

enough way that an arbitrary attack is possible. 

An important note is that skill level is an independent consideration.  The 

professional does not necessarily possess more skill than the amateur attacker.  As will be 

shown by the example in this paper, the technical skill level required to plant an artifice 

may be comparable to anyone with a basic ability to understand and write code.   

E. CONTRAST WITH OTHER ATTACK METHODS 
Meyers (1980) classifies attacks into three categories:  Inadvertent Disclosure, 

Penetration, and Subversion.  This taxonomy is presented with the assumption that the 

goal of each attack is bypassing system controls for the purpose of unauthorized 

disclosure of information.  Distinctions are made between them based on the skill level of 

the attacker and the level of control he has on the system under attack.  Inadvertent 

disclosures predominantly result from accidentally occurring states in the system or 

simply when a human error allows unauthorized entities the ability to observe 

information in an unintended way.  Penetration is a more deliberate attempt to exploit a 

flaw that already exists in the system to bypass security controls.  The penetrator must be 

content with working under the constraints imposed upon him by a system over which he 

has no control.  He will exploit bugs or other types of flaws to bypass or disable security 

mechanisms on the system.  In contrast, the subverter is skilled and knowledgeable and 

has sufficient access to the system at one or more points in its life cycle to exert influence 

on its design, implementation, distribution, installation, and/or production in a way that 
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can be later used to bypass the protection mechanisms.  He will not rely on the presence 

of an accidental bug in the system (which may be corrected at any time), but will favor 

instead a carefully hidden mechanism that he can be relatively sure will persist through 

new product versions and upgrades. 

The distinction between the so-called Trojan Horse and an artifice as used in 

system subversion is important to understand.  The Trojan Horse is a piece of software 

that provides two distinct functions.  One is observable and is a function that entices an 

individual to use the software.  The other function is hidden and carries out the malicious 

intentions of its designer.  Implicit in this description is that the Trojan Horse requires 

actions (but not the active cooperation) of a legitimate user on the system.  It will 

therefore be constrained by the level of access that this user has on the system.  With this 

technique, system security mechanisms are still in place and functioning properly – the 

attacker’s code is executed with a surrogate’s permissions.  If the surrogate has a 

restricted domain of control, the Trojan Horse software will be limited in its utility to the 

attacker.  Subversion on the other hand, does not require action by a legitimate user.  It 

simply bypasses any security mechanisms that the subverter chooses to bypass.   

Additionally, an artifice will typically include the capability to be remotely 

activated and deactivated.  The normal state for the artifice is deactivated.  In this way, 

the artifice is less likely to be observed by the users and operators of the system.  The 

mechanism that activates the artifice waits for some unique trigger to exist in the system.  

Examples are a particular stack state, an unlikely sequence of system calls or signals, or 

codes hidden in unused portions of data structures passed into the kernel via system calls.  

The possibilities are endless.  This trigger can be thought of as a key that can be made 

arbitrarily long from a cryptographic standpoint.  Other examples from Grant and Richie 

(1983) include triggers such as geographic position or keywords observed in messages 

processed by communication systems.  As a result, no amount of security test and 

evaluation (ST&E) can confirm the presence or absence of the artifice.  This will be 

explored later in Chapter VI.  “Limiting the Risk of Subversion in Information Systems.” 

Brinkley and Schell (1994) classify misuse techniques similarly into human error, 

user abuse of authority, direct probing, probing with malicious software, direct 
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penetration, and subversion of security mechanism.  In this taxonomy, subversion stands 

apart as well for the same reasons described above. 

F. WHY DECISION MAKERS SHOULD SERIOUSLY CONSIDER THE 
THREAT OF SUBVERSION 
That subversion is a threat is even truer today than it was in the past.  The sheer 

size and complexity of today’s systems alone make the insertion and hiding of an artifice 

much easier than it was at the time of Meyers’ thesis.  Additionally, design and 

development efforts are more divided among many individuals or departments which 

makes it possible to divide the artifice into separate modules further obscuring its true 

nature.   

As the market for information technology gradually shifted from the government 

and military to the private sector, the government’s ability to keep pace with industry 

diminished.   For the government to continue developing systems in-house would hinder 

its ability to do business with private industry.  As a result, the government shifted to the 

use of commercial products and in so doing resigned itself to accepting whatever 

direction products were taken by the larger market forces.  It is now clearly evident that 

security was unimportant to the broader market and therefore had little impact on an IT 

company’s bottom line.  As competition among vendors increased, the pressure to release 

products by deadlines intensified.  As a result, a subverter may stand a better chance of 

getting his artifice through quality control (if it is noticeable at all) in the rush to get the 

product to market.  This is the environment in which the products we rely upon for our 

information technology needs are developed. 

One does not need to look far to find reports of security critical bugs and system 

intrusions that could just as easily been the result of subversion as error.  Recent press 

reports illustrate the opportunity and motive to conduct a subversive attack in the 

Microsoft Windows operating system.  As this is a major vendor with a tremendous 

market share, any such subversive attack would have far reaching impact.  During the 

month of October 2000, an individual gained access to systems at Microsoft and had 

access to the source code for a future release of the Windows operating system and 
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Office Suite2.  The company of course dismissed the possibility that the code was 

tampered with, but it would be impossible to provide any real level of assurance that this 

is true.  In January 2001, Verisign Corporation (http://www.verisign.com) erroneously 

issued Microsoft certificates to individuals who falsely claimed to be Microsoft 

employees3.  As a result, these individuals had the opportunity to publish code that would 

appear to be certified by Microsoft Corporation.  Hence, many users (even 

administrators) might associate a false level of trust with malicious software (operating 

system upgrades, etc.) written by these individuals.  On Dec 17, 2001, shortly after the 

United States’ war on terrorism began, Newsbytes reported4 on claims by a captured 

member of the Al Qaeda regime in Afghanistan that members of a terrorist organization 

had infiltrated the Microsoft Corporation as programmers for the expressed purpose of 

subverting the Windows XP operating system.  While there was a lack of corroborating 

reports, this indicates that subversion is considered as a valid attack technique. 

Taken together, these cases demonstrate that both opportunity and motive exist 

for carrying out a subversive attack.  By the example presented later in this paper, one 

may conclude that the means to mount such an attack would not be hard to attain.  

Therefore, in order to fulfill the responsibility to protect information systems, decision 

makers should be aware of this threat and consider its significance in all deployments of 

information technology.  Certainly, decision makers could be considered negligent if 

subversion is ignored in a wide range of military systems or in the systems upon which 

the critical infrastructure of the United States Depends. 

G. OUTLINE 

The remainder of this paper is organized as follows.  Chapter II.  “High Level 

Discussion of the Network File Server (NFS) Experiment” describes the experiment from 

a high level, covering the goals and objectives and how these affected the design of the 

artifice.   

                                                 
2 See http://money.cnn.com/2000/10/27/technology/microsoft/ 
3 See http://www.verisign.com/developer/notice/authenticode/ 
4 See http://www.newsbytes.com/news/01/173039.html 

 9 



Chapter III.  “High Level Discussion of SSL Subversion” describes an attack, 

which was not implemented in this project, by which an attacker can observe the SSL 

encrypted network communications between two systems with little to no risk of being 

discovered.  It is shown that no amount of assurance on the server side alone can prevent 

such an occurrence if the client is subverted. 

Chapter IV. “Detailed Description of the NFS Example” describes the 

implementation of the NFS experiment in detail. 

Chapter V.  “Evaluating System Security in the Face of Artifices” debunks the 

prospect of discovering the presence of artifices or proving their absence in a system after 

it has been developed either through  code inspection or by security test and evaluation. 

Chapter VI.  “Limiting the Risk of Subversion in Information Systems” presents 

the only known solution for eliminating the threat of subversion. 

Chapter VII.  “Conclusions and Future Work” ties all of these points together and 

proposes future direction to address the threat of subversion. 
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II. HIGH LEVEL DISCUSSION OF THE NETWORK FILE 
SERVER (NFS) EXPERIMENT 

A. HIGH LEVEL CONSIDERATIONS 

1. General 

The primary purpose of this thesis is to highlight the risk of the threat posed to an 

information system by a professional attacker mounting a subversion attack.    A 

demonstration of a working example was decided to be the best option for making this 

point.  To achieve maximum impact, not only did an artifice need to be constructed, but a 

full demonstration of an attack had to be developed as well.  As a result, the experiment 

diverges from a true reflection of the professional attack in several respects.  First, there 

were significant restrictions on the time available to construct the artifice.  This would 

rarely be the case in a well crafted artifice such as might be constructed by a professional 

attacker (e.g. a nation-state, organized crime group, or company engaged in corporate 

espionage).  Second, the author was free to openly plant the artifice and did not need to 

be concerned that his actions might be discovered.  Obfuscation of the artifice was not 

given serious attention.  In a professional attack, obfuscation would be of the utmost 

importance and would add to the time required.  Finally, there was essentially no long-

term motivation in the development of this attack.  The professional would be motivated 

by the prospect of a very significant payoff potentially far in the future while the author 

was motivated by a short-term payoff goal.  In spite of these constraints, this experiment 

demonstrates the inability of contemporary approaches (such as application level 

security, encryption, security test and evaluation (ST&E), and perimeter defenses) to 

provide for security against subversion.   

2. Selecting the Method of Subversion and the Target System 
Subversion may occur at any point in the lifecycle of a system (Meyers, 1980).  

However, since access to the lifecycle of a major operating system is quite limited for a 

student, the installation and maintenance phases present greater opportunity for insertion 

of an artifice.  Also, in the case of open source systems, a distribution phase attack could 

be mounted.  Several Linux vendors offer no-cost versions of their operating system for 

download from their websites.  MD5 hashes of the CDROM images are posted to provide 
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customers with the ability to check the integrity of the downloaded images.  Often, third 

parties provide mirror sites to reduce the load on a single server, which opens the 

possibility for a malicious mirror site offering subverted versions of the software. 

For the reasons stated above, the Linux operating system was chosen as the 

platform on which to build the demonstration.  The availability of source code and the 

abundance of documentation make the Linux kernel fit well into the constraints of the 

experiment.   

Choosing an open source operating system for this experiment runs the risk that 

some readers will be lead to believe that closed source products are immune to the attack 

as demonstrated.  While it is arguably more difficult, the task is not particularly daunting 

for the professional attacker described above.  As this example is carried out late in the 

lifecycle of the product, there would be significantly more work involved in subverting a 

closed source product.  Planting an artifice during the distribution or installation phase 

would involve reverse engineering the application and creating a binary patch to insert 

the artifice at the appropriate location in the product binaries.  However, during the 

earlier phases of the lifecycle, the level of difficulty from a programming standpoint is 

the same for both closed and open source products.  Then there is the question of access.  

Here again, the professional is one who will either have the access or have the resources 

to obtain it regardless of the open or proprietary nature of the system. 

3. Selecting a Suitable Attack Demonstration 
In order to achieve the desired impact, an attack had to be selected such that its 

significance was readily apparent to the average observer.  Moreover, the activation 

mechanism needed to be commonly available and understood.  To this end, the author 

chose a Network File Server (NFS) as the application on which to demonstrate the attack.   

The file server is general enough and common enough that the typical user of information 

technology will immediately understand its function as well as the notion that one user’s 

data should be protected in some way from access by other users who lack permission to 

do so.  A demonstration in which an attacker is able to obtain access to information 

which he should not have should be comprehendible to readers with diverse levels of 

technical sophistication. 
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Likewise, the activation must be fairly straightforward.  After investigating 

several options, the author settled on using the network interface for activation.  Again, 

network communications are easily explainable to most audiences.  They are also 

ubiquitous enough that the activation interface will likely be available on any target 

system as well.  The Internet is one of the most widely used technologies available today.  

For an overview of the aspects of Internet networking that apply to the following 

discussion, see the APPENDIX. 

The specific form of activation in this experiment involves sending a malformed 

packet, which contains some additional information to the target.  The target’s 

networking implementation (having been subverted) will drop the malformed packed as it 

normally would, but in addition would recognize the packet as being a trigger to activate 

the artifice that will then grant the attacker access.  Hence, the artifice on any system 

connected to a network can be activated remotely from any other system connected on 

the same network (e.g. the Internet, Wide Area Network or Local Area Network).   

Additionally, the artifice can be activated locally by sending the activation packed to the 

host’s loopback address (an address that loops back to the sender of the packet). 

For the reader who does not have the opportunity to observe a demonstration of 

the NFS example, the attack (shown in Figure 1.) proceeds as follows.  A client is shown 

to have the file system of a remote network file server mounted locally.  The 

demonstrator shows how he is denied permission to access a certain portion of the file 

system.  An activation packet is sent to the subverted server.  Then the demonstrator 

shows how he subsequently has access to read, write, and modify file objects on the 

server.  Finally, a packet is sent to deactivate the artifice and the normal functioning of 

the system is confirmed by showing a denied attempt to access another user’s file or 

directory on the server. 
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Figure 1.   The NFS Attack Scenario 
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B. ARTIFICE DESIGN AND INTEGRATION INTO THE OPERATING 
SYSTEM 
The purpose of the artifice used in this example is to provide a means to bypass 

file permission checks for a specified user at will and then to re-enable the normal system 

operation.  The Linux kernel uses a virtual file system that abstracts all of the various 

types of files systems and devices into a logical, consistent interface.   

The example presented here shows how a few lines of code can result in a 

significant vulnerability.  It exhibits all of the characteristics of subversion except that no 

real attempt has been made to hide or obfuscate the artifice.  First, the artifice is small.  In 

all, eleven statements in the C programming language are needed for this example.  This 

small size in relation to the millions of lines of code in the Linux Kernel makes it highly 

unlikely that any but those involved in the development of the kernel would notice. The 

artifice itself is composed of two parts located in two unrelated areas of the kernel.  

A second characteristic is that it can be activated and deactivated.  As a result, the 

functionality exists only when the attacker wills it.  This will further complicate any 

attempt to discover the existence of the artifice.  Unlike some Trojan Horse attacks, there 

will be no suspicious processes running on the system.  Even when activated, the 

functionality is embedded in the kernel and not in a user-space process so its 

observability is limited.  Under these conditions, no amount of testing is likely to show 

the presence or absence of a well-hidden artifice. 

Finally, it does not depend on the activities of any user on the system.  The 

attacker can activate and deactivate the artifice at will as long as the system will process 

IP packets.  He is therefore not subject to any permission constraints of a particular user 

on the system.  Moreover, the fact that all users and administrators of the system may be 

trusted (for example in an environment where all users are cleared to the same level and 

the system is operated in system-high mode), has no effect on the attacker’s ability to 

exploit the system.  Administrators make the system vulnerable simply by connecting it 

to a network.5 

                                                 
5 A closed system can be vulnerable as well by using triggers based on other conditions in the system 

such as geographic position, system load, etc. For examples, see Grant and Riche (1983). 
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1. Artifice Function 
The artifice in this example subverts the Linux file system permission checks.  

When in the activated state, the artifice grants the attacker access to any file on the 

system by causing the file permission check in the kernel to be bypassed.  This behavior 

is limited to a specific user ID that the attacker specifies at activation time.  The system 

functions normally for all other users. In fact, the attacker can even use a userID that is 

unused (i.e. one for which no account exists) on the target system.  Activation and 

deactivation is accomplished by sending a single User Datagram Packet (UDP) to the 

target system.  The portion of the kernel that receives network communications has also 

been subverted to recognize a packet that has a distinguishing characteristic (a trigger 

known only to those involved in the subversion and the attack) that activates and 

deactivates the artifice in the file system.  The trigger can be made to be arbitrarily 

unique to avoid not only accidental activation and deactivation, but also make it difficult 

to guess the activation code (this will be discussed in greater detail later). 

The operation of the file permission check mechanism in the subverted system is 

shown in Figure 2.  The comparisons that are made in the decision branches reference a 

global variable in the kernel.  Since the variable is global, any portion of the kernel can 

have access to this value.  Global variables are used quite often in the Linux kernel. 
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Figure 2.   File Permission Checks in a Subverted System 

 

The artifices’ global variables are set and cleared in the activation and 

deactivation mechanism.  This occurs in the portion of the kernel that implement the 

network protocol stack.  In the Transmission Control Protocol/Internet Protocol (TCP/IP), 

headers contain checksum values to ensure integrity of the received data.  The example 

uses a User Datagram Packet (UDP) to activate and deactivate the artifice.  In the UDP 

handling code of the kernel, every UDP packet is tested for an invalid checksum.  If one 

is detected, control passes to a portion of the kernel that logs an error and drops the 

packet (removes it from the list of packets in the queue).  In the subverted kernel, the 

checksum error code looks for some predefined unique values.  If this condition is met, it 

sets the artifice state to “On” and the user who is to receive privilege to the value in the 

source port field of the UDP packet.  This control flow is shown graphically in Figure 3.   
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Figure 3.   Artifice Activation 

 

Deactivation occurs the same way except that the global variables are set so that 

the artifice is deactivated and the system returns to its original operation. 

C. THE SUBVERTED SYSTEM IN OPERATION 
A system subverted in this way is vulnerable simply by connecting it to a network 

that can be reached by the attacker.  In fact, the only action required on the part of an 

administrator of the NFS system is to connect it.  Furthermore, the only action he can 

take to deny access to the attacker is to disconnect it (making it useless as an NFS server).  

While it is true that there are additional measures that can be taken to enhance the 

security of NFS over the configuration used here, they are largely ineffective, as the 

subverter would simply bypass these security controls as well.  For example, NFS servers 

register clients that are permitted to use them.  If the attacker works from one of these 

machines, the attack is trivial.  If the attacker does not have access to one of these 
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machines, he merely needs to be in a position to observe traffic on the network and spoof 

his identity as that of a legitimate NFS client. 

D. CHAPTER SUMMARY 
We have described an example of subversion, which is simple but effective for 

illustrating the risk of subversion.  While it is possible to secure an NFS server in ways 

that will render this artifice ineffective, to dwell on such details would distract from the 

point.  The main point here is that any protection mechanism can be rendered ineffective 

by modifying it so that the protection mechanism is bypassed.  With the risk that the 

artifice can be planted in the kernel, no application layer security solution can be counted 

on to provide the protection for which it is designed. 
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III. HIGH LEVEL DISCUSSION OF SSL SUBVERSION 

As a second example, a high level discussion is presented here of a subverted 

Secure Sockets Layer (SSL).  SSL is commonly used to provide secure communications 

between web servers and web clients (browsers) so that internet banking transactions and 

credit card purchases for web commerce applications are protected from unauthorized 

observation or modification.  The client and server negotiate session keys that are used to 

encrypt traffic between them using some symmetric encryption algorithm.  Linux systems 

commonly use OpenSSL (http://www.openssl.org) to implement SSL.  The Apache Web 

Server6 (http://www.apache.org) has a mod_ssl package available that acts as an interface 

between the web server and OpenSSL.   Therefore the Apache web server relies on 

OpenSSL to perform the encryption and decryption of the web traffic. 

A. OVERVIEW OF A POSSIBLE SSL SUBVERSION 
SSL works in the following manner.  The client and server use symmetric session 

keys to encrypt and decrypt traffic sent between them.  The session keys are generated by 

the sender and then encrypted with either a secret shared by both systems or by using 

some public/private key asymmetric encryption.  When the encrypted session key is 

received, it is decrypted by the receiving system and then used to decrypt the data 

received from the sender.  There are a number of options available to the attacker for 

subverting this mechanism.  The most obvious is to simply duplicate all communications 

in an unencrypted form and send them to a system of the attacker’s choosing.  This 

option might cause far too much observable system activity to be considered viable by 

the professional attacker.  Another option could be to weaken the key generation 

mechanism by limiting the amount of entropy used to generate random numbers.  The 

attacker could then capture the network transmissions and the task of “breaking the code” 

would be sufficiently constrained so as to make it computationally practical. 

A much better option than either of these two would be to simply have one of the 

systems participating in the communication send the session keys out in an unencrypted 

form.  The attacker could then position himself between the two systems, gather the 
                                                 

6 According to the Netcraft Survey (http://www.netcraft.com/survey), over 65% of the active web 
servers in February 2002 were running the Apache web server. 
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encrypted traffic and at the same time, watch for the session keys.  Having both, he could 

then decrypt and read the data.  Due to the fact that the session keys are unknown on 

either system outside of the SSL implementation, plus the fact that they are a ‘random’ 

sequence of bits, it is unlikely that any observation of them would lead to the conclusion 

that they are keys that have recently been used to encrypt SSL traffic.  As an added 

precaution however, the session keys could be transmitted in a way that draws little 

attention to the fact that they are being sent as described below.   

Web communications use Transmission Control Protocol (TCP), which has 

provisions to guarantee the connection’s integrity.  One of the ways it does this is by 

providing sequence numbers in each packet.  The sequence numbers give the receiver the 

ability to ensure that it received all of the packets (by checking for a missing number in 

the sequence) as well as to put the packets back together in the correct order.   In much 

the same way that the trigger is set in the NFS example, the session keys could be 

embedded in a packet that has an invalid checksum.  The receiver would therefore ignore 

and drop the packet.  Since the checksum is bad, the receiver would normally request that 

the sender retransmit it.  However, the artifice would simply cause the packet to be 

dropped silently in this case.  The logging of the bad packet could be bypassed as well.  

To the attacker eavesdropping on the communication, these packets would be tested for a 

characteristic chosen by the attacker to indicate the presence of the session key.   In order 

to know which data packets are associated with which key, the artifice could reuse one of 

the legitimate TCP sequence numbers that was used to transmit the SSL encrypted data.   

This approach has some distinct advantages.  First, the attacker can be totally 

passive and maintain anonymity.  No packet needs to be sent to him directly by either 

system.  Another advantage is that a subverted system on either end would provide all 

required information for decrypting the traffic.  This is significant in that it invalidates 

any assumption that using high assurance systems or additional security products at the 

server end only will protect the data stored at the server.  Since both ends must use the 

same session keys, any client that is permitted to access the server can potentially 

undermine the security in place on the server end.   
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For instance, one might provide additional protection of the server’s private keys 

by storing them on a smart card.  With this design, the session keys are decrypted on the 

smart card, which adds some level of protection over decrypting the keys on the host 

operating system since the private key is not exposed.  However, the computationally 

intensive decryption of the traffic is most often performed off of the card due to smart 

card processor and I/O limitations.  As a result, the session key (once decrypted on the 

smart card) will be sent to the host (i.e. server) system’s SSL implementation that will 

then use it to decrypt the traffic.  If the server’s SSL implementation has been subverted 

to send the session key to the attacker, the presence of the smart card is irrelevant to the 

level of confidentiality realized.  Additionally, since the same session key is used on both 

the server and client sides, the security is only as strong as the weaker of the two sides.  

The client may just as effectively transmit the keys as the server.7 

B. CHAPTER SUMMARY 
We have provided an additional high-level discussion of a potential subversion of 

SSL, which is relied upon for protecting confidential communications on the internet.  In 

this example, subversion of either the web server or the web client can result in a 

compromise of this communication.  As proposed here, placing the artifice in the SSL  

implementation will affect not only web traffic, but also any application that relies on 

SSL.  We have also presented a case against investing significant amounts of resources in 

placing strong security measures at the server side only.  Before making such an 

investment, the prospect of subversion and its potential consequences should be 

thoroughly considered. 

  
 
 
 
 
 
 
 
 
 

                                                 
7 This is not to imply that every component in the network must be high assurance. Architectures such 

as those presented in Weissman (1992) and Fellows, et. al. (1987) provide sufficient security at both the 
client and the server without requiring the client to give up “typical commercial functionality.” 
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IV. DETAILED DESCRIPTION OF THE NFS EXAMPLE 

The details of the example are presented here for those who are interested.  The 

discussion begins with a description of the normal functioning of file permission checks.  

It must be remembered however, that the details of what happens in these tests were 

rendered totally irrelevant in the experiment.  None of these details matter since the 

artifice simply bypasses the permission checks.   

A. LINUX IMPLEMENTATION OVERVIEW 
Linux implements a Virtual File System (VFS), which is a software layer in the 

kernel that abstracts the system calls for various types of file systems into a single 

common interface.  The VFS provides access to disk-based filesystems (Unix, ext2, MS-

DOS, VFAT, etc) and special filesystems (/proc and /dev).  In addition, VFS sits 

above the implementations for several network files systems such as the Network File 

Server (NFS), Coda, SMB (Microsoft’s Windows and IBM’s OS/2 LAN Manager), and 

Novell’s NetWare Core Protocol (NCP).   A diagram of this relationship is shown below 

in Figure 4.   

 

Virtual File 
System 

… MS-DOS NTFS /dev NFS 

File System Calls 

 
Figure 4.   The Linux Virtual File System 

File object access permissions in Linux are implemented using the standard Unix 

file permission bits for read, write, and execute as granted to owner, group and others.  

All requests for access to a file flow through the function permission() located in the 

kernel source file fs/namei.c.  The file’s inode structure is first checked for a 
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pointer to a file system-specific permission() function.  If there is none, 

permission() calls the vfs_permission() function.  Permission bits are 

checked against the user specified in the current process’ task_struct (defined in 

include/linux/sched.h) which is stored in the process descriptor in the kernel-

space stack as shown in Figure 5.  below.  The file system user ID  (fsuid) is used by 

this function in the tests for permissions.  Having a separate file system userID (fsuid) 

enables the kernel to handle requests from a process that is acting on behalf of another 

process without modifying the normal uid or effective user ID (euid) which may be 

root or 0.  The permission() function returns a zero if the permission test succeeds 

and the –EACCESS constant if it fails. 

 

STACK 

PROCESS 
DESCRIPTOR 

0x015fbfff 

0x015fb000 

0x015fa878 

0x015fa3cb 

0x015fa000 
current.

esp

 
Figure 5.   The Process Kernel Stack (From Bovet & Cesati, 2001) 
 

1. Artifice Implementation 

The VFS system is an attractive location for the artifice since it can affect 

numerous file systems types.  Simply returning a zero from the permission() 

function will result in approval of the requested access.  This alone, however, is far too 

general, as all users on the system will be granted access to any file.  To avoid such 

obvious behavior, a mechanism must be built through which a particular user can be 

specified leaving all other users on the system subject to the normal permission checking.  

This functionality is implemented in the activation mechanism.  Any activation 

mechanism should be flexible enough to be used in a variety of situations and ubiquitous 
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enough that the attacker can be relatively sure it will be available on his target.  In 

meeting these design objectives, the networking protocol is a suitable location for the 

activation portion of the artifice. 

The portion of the artifice that grants access is located in the fs/namei.c 

source file of the Linux 2.4.3 kernel.  Two global variables, activated and userid, 

are used to store the state of the artifice (deactivated=0, activated=1) and the uid for 

which to grant access respectively.  Immediately upon entering the permission() 

function, a test is conducted by an ‘if’ statement that evaluates (1) whether or not the 

artifice has been activated and (2) whether the process’ fsuid is equal to the global  

userid variable.  If so, the permission check returns success (access granted) regardless 

of the file permissions on the requested file.  Otherwise, the permission tests proceeds as 

normal. 

The activation and deactivation artifice is planted in the Linux 2.4.3 kernel source 

file net/ipv4/udp.c.  Any error detected in the checksum of a UPD header will 

result in execution branching to code that logs the event and silently discards the packet.  

The artifice is planted in the portion of code that provides this function.  The artifice is 

embodied in two ‘if’ statements.  The first statement activates the artifice.  It first 

checks to see that (1) the artifice has not already been activated and (2) whether or not the 

bad checksum matches the activation codes of decimal 213 or 2113 (chosen arbitrarily).  

If so, it activates the artifice by setting the global variable activated to 1 and the 

userid variable to the user ID that has been specified in the UDP source port.    

As designed in this example, activation proceeds in the following manner:  a UDP 

packet is constructed with the following characteristics: 
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Field Value 

Checksum Invalid and equal to one of two 
predefined values (213 or 2113) 

Source Port The userID corresponding to the 
uid for which the attacker wishes 
to grant access. 

Destination port Irrelevant 

Table 1.   Activation Packet Characteristics 
 

Two predefined values (decimal 213 and 2113) for the checksum are used in the 

event that our ‘secret’ checksum (the activation code) turns out to be valid for the packet 

we construct.  In the normal kernel, a packet with a bad checksum would simply be 

discarded.  Since UDP is a stateless protocol, the packet will just be forgotten.  Since 

userIDs are commonly small numbers (most Linux implementations begin UIDs for 

normal users close to 500), these packets will appear to have originated from a privileged 

(<1024) port on the host and will more likely be permitted through a firewall than those 

with higher port numbers.  TCP could be used as well but would require a slightly more 

complex implementation.  Once a UDP packet with these characteristics has been 

received, the artifice will be in the activated state. 

Deactivation proceeds in a similar fashion.  A packet with the following 

characteristics is sent to the target host: 

Field Value 

Checksum Invalid and equal to one of two 
predefined values (312 or 3112) 

Source Port Equal to the current value stored in 
the userid variable 

Destination port Irrelevant 

Table 2.   Deactivation Packet Characteristics 
 

When a packet with these characteristics is processed, the artifice will set the 

activated variable to zero which deactivates the artifice.   

There are a few things worth pointing out about this artifice.  First, it gives the 

subverter even more power with respect to the file system than the root user has.  Even 
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files for which the root user does not have current access8 will be available to the 

attacker.  Second, not only can this attack can be mounted remotely via any network path 

available, but it can also be launched locally by sending the activation and deactivation 

packets to the localhost (127.0.0.1) address. 

2. The Network File Server as a Target   
The Network File Server (NFS) allows a remote file system to be mounted locally 

and appear as though it were located on a local disk drive.  NFS runs on top of the RPC 

protocol and uses AUTH_SYS as its default security mechanism.  AUTH_SYS is a weak 

security protocol but is common in NFS implementations.  In this protocol, the standard 

set of user credentials (the UID and associated Group ID’s) are used for determining 

access.  Every NFS request will contain these credentials.  When a request comes into the 

server, the NFS Daemon maps the uid of the requestor into the fsuid of the NFS 

daemon process.  After some initial checks, the request will be passed through the VFS 

and into the permission() function.  As specified earlier, the access request will be 

evaluated based on the fsuid. 

B. CHAPTER SUMMARY 
We have provided the details of the NFS subversion example.  While the 

implementation is small (about 11 C language statements), the fact that it is in the source 

code listing makes it vulnerable to detection.  Again, obfuscation was not one of the goals 

of this project.  Given more time, the artifice could be hidden much better.  The critical 

observation is that the technical skills required to subvert a system are relatively 

commonplace. 

 

                                                 
8 Of course the root user could simply give himself access to the file using the UNIX chmod 

command. 
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V. EVALUATING SYSTEM SECURITY IN THE FACE OF 
ARTIFICES 

As stated earlier, no real attempt was made to hide the artifice in the Network File 

Server example.  In contrast, the professional attacker will most definitely spend 

significant effort on this aspect of the attack.  This section will begin with a discussion of 

the various techniques that might be employed to hide an artifice followed by a 

discussion of the ways in which an artifice might be detected.  Apart from catching the 

subverter in the act of subversion, discovering the presence of a particular artifice can be 

made extremely difficult.   

A. TECHNIQUES FOR FINDING AN ARTIFICE 
The manner in which one may find an artifice depends upon the way in which it 

was hidden and the point in the product lifecycle when the subversion occurred. 

1. Design and Implementation Phase Subversion 
Meyers (1980) describes several examples of artifices that could be implemented 

in a system’s design phase.  Design phase subversion has the least chance of being 

“patched” away.  Of course the artifice will be visible at some level in the design 

documentation but there is ample opportunity for a subverter to propose to a design team 

a seemingly sound alternative that offers subtle vulnerabilities.  One subtle example can 

be found in asymmetric encryption protocols which is discussed below as an analogy.   

Jim Alves-Foss (1998) presented a very interesting example in the context of 

public-key based authentication protocols.  In this attack, an otherwise secure protocol is 

subverted in an indirect way by the existence of another independent protocol (possibly 

devised by an attacker) that is permitted to use the same key pair as the original protocol.  

By interleaving messages between the two protocols, the attacker can masquerade as a 

legitimate user to other entities.  He demonstrated how a Needham Schroeder Public Key 

Protocol (which had been hardened against a previously known attack) could be spoofed 

if it used the same keys that are used in another protocol designed for a different purpose.  

Hence a subverter developing an application that uses public key certificates could devise 

his own protocol (possibly secure enough for the new application) that provides the 
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necessary pieces to masquerade as other entities in previously established protocols and 

applications. 

What makes this example of subversion interesting is its circuitous nature.  The 

target of the attack is not the authentication protocol but the public key infrastructure.  

The authentication protocol is not altered in any way by the subverter.  To accomplish his 

goal, the subverter merely needs to influence policy so that his new application and 

protocol is permitted to use the same keys as the existing ones.  

Such subtle interactions often occur accidentally and are discovered later with 

widespread use.  However, as stated earlier, the well-designed artifice will have some 

form of unique trigger mechanism to hide its presence in normal operation modes.  In this 

way accidental discovery from general use is nearly impossible. 

The artifice in the NFS example could potentially be inserted during the 

implementation phase of the system lifecycle.  In this mode of operation, the subverter 

will attempt to insert the artifice during the implementation or coding of the system.  He 

can accomplish this either by infiltrating the development team as an agent or by 

exploiting weaknesses at the development facility (either in its physical security or in its 

configuration management system). 

In a given system, the subverter often has a vast number of options for hiding an 

artifice.  The use of low level languages such as assembly (common in the Linux kernel 

to enhance speed) can be used to code the artifice in a way that make understanding its 

nature difficult.  For example, in the Linux operating system, every process acts on behalf 

of a user (possibly the system) who is identified by a userID stored in the process 

descriptor that the kernel maintains for each process.  When a process requests access to a 

file, the kernel checks the userID of the requestor by inspecting this data structure.  Since 

this data structure is used frequently and for many purposes, it must be fast.  Linux 

achieves speed in functions like this by using low-level assembly language to program 

them.  To keep the difficulty of writing the code at a minimum, a macro called current 

has been implemented that will return the starting address of the process descriptor 

belonging to the current process.  Individual members of the process descriptor (e.g. 

fsuid) are referenced relative to this base address.  Prior to compilation, every instance 
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of current in the source code will be replaced with the assembly language statements.  

So, one way to hide a portion of the NFS artifice, would be to replace the macro 

current with a modified version of the assembly code that would return the address of 

the fsuid data member rather that the beginning of the data structure.  It therefore 

would be less likely to be associated with the original macro’s function. 

Any artifice placed in the system’s source code is visible in the source listing.  A 

developer with understanding of the system of sufficient breadth and depth might 

discover the artifice through inspection.  This depends on how well the subverter has 

hidden it.  The subverter might also remove the artifice from the source listing after it has 

been compiled.  Another technique was presented in Ken Thompson’s 1984 Turing 

Award acceptance speech (Thompson, 1984).  In this speech, he described a subverted 

compiler that would recognize when it was compiling the UNIX source code and insert a 

trap door.  In this way, the trap door could not be discovered from inspection of the 

source code.  This speech sent shock waves through the audience at the time, but this 

technique was described more than a decade earlier in Karger and Schell (1974). 

2. Distribution, Maintenance, and Support 
With these attacks, the subverter can choose to affect all delivered systems or 

focus the artifice with respect to a particular target.  In these attacks, the system has been 

through testing for quality assurance and a binary has been produced that is ready to ship 

to customers.  The subverter gains access at some point in the distribution system.  He 

then modifies the system by applying a patch to the binaries or by replacing the binaries 

entirely.   

Similar methods are used in maintenance and support phases.  Most vendors have 

patches and updates available for download via the Internet.  Others ship them through 

the mail or send them with maintenance personnel.  This artifice is perhaps the easiest to 

find if a known good copy of the system can be obtained for a byte-by-byte comparison.  

The difficult task is establishing that you have a good copy.  Some measure of assurance 

is provided by digitally signing the binaries.  The vendor runs a cryptographic one-way 

hash function over the binaries and then signs it using a private key.  To confirm that the 

software has not been modified, the customer uses the vendor’s public key to verify the 
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signature.  In some cases, a GNU Privacy Guard (GPG) key may be posted on the 

website with the software.  GPG is an open source equivalent to Pretty Good Privacy 

(PGP).  The trust model of these schemes is such that each user determines whom to trust 

individually as contrasted with the model used in the commercial Public Key 

Infrastructure (PKI) and Department of Defense models in which a trusted root authority 

(e.g. the DoD, Verisign, etc.) binds identities to public keys and signs a certificate that 

provides this binding.  Providing the public keys through the same distribution channel as 

the software leaves customers with little reason to trust that the software, public keys, and 

hash values have not all been modified.  The PKI trust model has been compromised in 

the past as well as described in the Verisign certificates case in Section I.F. “Why 

Decision Makers Should Seriously Consider the Threat of Subversion.” 

B. PROVING THE PRESENCE OR ABSENCE OF AN ARTIFICE 
The question to ask given an example of an artifice such as the one presented here 

is not “How can this artifice be found” but “How can one be sure that there are no 

artifices in the system?”  The answer to the first question is of little value.  The artifice 

presented here can be found since it appears in the source listing and two new global 

variables are present in the system.  It is also relatively overt in that it operates in a rather 

direct manner inside a security critical function.  However, without controls as described 

in Chapter VI. “Limiting the Risk of Subversion in Information Systems”, gaining the 

assurance that a system is free of artifices is an impossible task.  Two possible ways of 

“finding” an artifice once it has been planted have been suggested.  The use of these 

techniques to provide protection from a subversion attack are refuted below. 

1. Source Code Inspection Will Fail to Reveal an Artifice 
Having the system’s source code available will not give an inspector the ability to 

ensure that it is free of artifices.  As stated earlier, the professional will have hidden the 

artifice in a way that makes it exceedingly difficult if not impossible to identify by 

inspection of the source code.  In fact, it is possible for the subverter to plant an artifice in 

a way that it never appears in the source listing of the system, for example by subverting 

the compiler used in developing the system, or planting the artifice in the object or binary 

code directly.   
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Even without going to the trouble of subverting the compiler, the subverter can 

hide an artifice in a way that it is likely to never be found.  Today’s systems are much 

larger and more complex than ever before.   The more complex a system is, the harder it 

is to understand its overall function.  The attacker can use this fact to make his artifice 

hard to understand.  Programmers will often leave code alone if they do not understand 

what it does and it is not known to cause any problems in the system. 

2. Security Test and Evaluation (ST&E) Will Fail to Reveal an Artifice 

Security tests and penetration testing are worthless tools for assuring that a system 

is free of artifices.  Any artifice that incorporates a well-designed trigger (one which is 

unique) will never be found because the testing will occur when the artifice is disabled.  

The function of the artifice will never be noticed through this type of testing.  Code 

testing involves testing for the documented features of the system to make sure they 

function properly.  It does not consider what other undocumented functions may exist in 

the system.  To do so by testing would require that all possible input be sent to all 

possible interfaces.  This exhaustive approach is infeasible if not impossible for most 

systems.   

An informal argument supporting this assertion can be made by comparing the 

task of finding an artifice to finding a software bug in a system.  It is an indisputable fact 

that certain bugs may appear in software that are particularly difficult to track down.  

These bugs may appear and disappear as a result of a rare combination of conditions in 

the system.  Finding them is exceedingly difficult.  Now imagine that a similar function is 

built intentionally.  The feature manifests itself only when a rare combination of system 

conditions exists and furthermore, it can be triggered to occur at the will of the attacker.  

If finding the source of such a condition that has manifested itself in a noticeable way is a 

hard problem, how much harder would it be to find one that will manifested itself only 

when triggered?  It would be impossible to devise a procedure to test for clandestine code 

that operates this way. 

Given a black box (i.e. one for which the internal operations are unknown), it is 

impossible to determine whether or not it contains an artifice.  As stated in Section A.1. 

of this chapter “Design and Implementation Phase Subversion,” the attacker can ensure 

that nothing more than a black box exists with respect to the artifice, for example by 
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removing the artifice from the source listing after compilation or by modifying the 

compiler to perpetually insert it.  In this way, the source code for the artifice will cease to 

exist yet the functionality will remain in the system. 

Edsger Dijkstra provided a scenario of testing a 72-bit adder that illustrates the 

futility of using testing to determine whether or not an artifice exists in the system.   In 

this scenario, the tester is given a black box that adds two 72-bit values with carry9.  His 

task is to determine if the adder performs correctly for any given input.  He must be able 

to state one of two results: (1) the adder performs correctly for every possible input or (2) 

the adder does not perform correctly for every possible input.  If the result is (2), the 

tester must provide the input conditions (i.e. the two numbers) for which the adder fails.  

Obviously, the only way to complete this task under these conditions is to test all possible 

inputs and validate the output.  The number of inputs that would need to be tested is 272 X 

272 or 2144 possibilities.  Consider the strength of a 128 bit cryptographic key and the 

amount of work required to mount a brute force attack against it.  The work involved in 

cracking a 128-bit key pales in comparison to the work required to test all inputs to the 

adder.  Conducting this test is computationally infeasible. 

Compare this scenario to the task of determining whether or not an artifice exists 

in a system.  As stated earlier, the subverter can use an arbitrarily long value as the 

activation key.  Suppose the tester or certifier knows how to tell if the artifice is active as 

well as how to try guesses of the trigger value (i.e. he knows how to send an arbitrary 

value into the trigger mechanism).   This is essentially the same scenario as Dijkstra’s 72-

bit adder with carry problem.  Since the activation key can be made arbitrarily long, it is 

computationally infeasible (i.e. impossible) to test whether or not the artifice is present in 

the system.  Now, suppose the task is to test for the presence of an unknown artifice.  In 

this case, the tester does not know how to send in a guess at the key.  Even if he stumbled 

across it and somehow accidentally activates the artifice (though he would likely not 

realize he has done so), what would he look for in the system?  What does he test for after 

he makes an attempt at activation?  The problem space is now the product of key space, 

                                                 
9 A binary add with carry results in the following operations:  two ‘0’s added results in a ‘0’, a ‘1’ and 

a ‘0’ added results in a ‘1’.  Two ‘1’s added will result in a ‘0’ with a ‘1’ carried over as input to the add 
operation performed on the next higher order bit. 
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potential activation mechanisms, and artifice function.  The added difficulty of this task is 

obvious.  These testing arguments can be extended to cover so-called “active defenses” 

built upon the use of intelligent agents or network monitoring to ensure system self-

protection, or to the use of cryptographic techniques for system protection.  Thease are 

worthless in the face of subversion. 

C. CHAPTER SUMMARY 
The obvious conclusion from these examples is that no amount of code review or 

ST&E can provide even the most basic level of assurance that a system is free of 

artifices.  How then can one ever have enough confidence in an information system to use 

it for critical applications?  This question will be addressed in Chapter VI “Limiting the 

Risk of Subversion in Information Systems.” 
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VI. LIMITING THE RISK OF SUBVERSION IN INFORMATION 
SYSTEMS 

It is impossible to protect information in a system that contains an effective 

artifice since the mechanisms relied upon to provide protection have been “programmed 

to fail” under specific conditions.  If it is impossible to prove by inspection or testing that 

a system is free of artifices and effectively impossible to find a known artifice after the 

system has been built, how can one ever obtain a level of assurance that would protect us 

from system subversion?  To answer this question, we must return to the conditions that 

make it possible for subversion to exist as a threat in the first place.  In the end, we 

present a viable solution to the subversion threat. 

A. ANALYZING THE THREAT MODEL 
We have shown that subversion is a real threat due to the existence of means, 

motive, and opportunity to conduct subversive attacks in the current environment.  

Specifically, we have shown that opportunity and motive to mount such an attack exist 

through presentation of real-world events covered in the press.  We have demonstrated by 

an example of a simple attack that the means to plant an artifice is present in anyone with 

a modest understanding of the target system and intermediate programming skills. 

So, to counter the threat of subversion, we must eliminate at least one of the three 

conditions that make it possible.  Obviously, it would be impossible to reduce or 

eliminate the subverter’s means to subvert the system.  The skills required to carry out 

this type of attack are far too common today.  Eliminating the motive is likewise a 

loosing proposition.  To do so, one must either reduce the benefit of mounting the attack 

or raise the cost of the attack to the point that it becomes prohibitive.  Since subversion 

bypasses the security controls of the system, the attacker gains at least as much benefit 

from it as do legitimate users.  Therefore, reducing the benefit for the attacker would 

reduce the benefit to legitimate users in equal measure.  Recall that subversion is the 

choice of a professional attacker, who was characterized by a willingness to incur 

substantial costs in resources and time in the first place.  The professional attacker could 

easily come in the form of a nation state with virtually unlimited resources.  Attempting 

 39 



to raise the costs would likely have limited effect on the motivation of a professional 

attacker.   

One might also attempt to reduce motive through deterrence.  Laws combined 

with a strong law enforcement system discourage bad societal behavior in this way.  

However, with system subversion, avoiding detection is the overriding concern of the 

attacker and one source of his willingness to incur significant costs.  Any hypothetical 

law enforcement effort would be mired in its inability to detect the activity.  In fact, in 

some of the early demonstrations by Air Force tiger teams in the early 1970’s, some 

artifices were so undetectable, that the system manufacturer was unable to locate them 

even when told of their presence and given details on how they worked (Brinkley and 

Schell, 1995).  Moreover, the source of the attack is equally liable to come from outside 

the jurisdiction of law enforcement as it is to come from within.  System subversion is a 

type of attack that would be considered by a nation state (or state-sponsored 

organization), organized crime group, or large corporation involved in corporate 

espionage.  Therefore, laws would likely have little to no effect on deterring this threat 

due to jurisdictional limitations and difficulties in establishing attribution. 

We are left then with the task of reducing or eliminating any opportunity to 

subvert the system.  At one level, this involves denying the subverter access to the system 

at all phases in its lifecycle.  Physical security of the development environment, 

background checks for employees and protected distribution and upgrade channels 

provide some measure of defense at this level.  However, these measures alone are not 

sufficient to provide assurance that subversion has not occurred in a system.  Espionage 

cases have shown that we cannot solely rely on background checks and security 

clearances.  To do so in the context of system subversion would require us to be certain 

of the trustworthiness of all of the many individuals involved in the design, development, 

maintenance, etc. of a system over the course of its entire lifecycle.  Some other control 

or controls must be put in place such that it would be impossible for the subverter to 

insert an artifice without it being detected.  
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B. SOFTWARE ENGINEERING, OBEJCT-ORIENTED PROGRAMMING 
(OOP), AND DEVELOPMENTAL ASSURANCE APPROACHES 
Software engineering has gained significant ground as a discipline since the time 

that subversion was first discussed.  It attempts to provide a sound methodology for 

carefully breaking a system down into highly cohesive modules and reduce the amount of 

reckless programming that occurs within software projects.  OOP languages have made 

this task easier by providing language constructs that enable software reuse as well as 

data hiding and encapsulation.  However, while these measures admittedly bring 

tremendous benefit to system development, they do not guarantee secure systems.  Parnas 

(1972) provides two modularized designs for the same hypothetical system to 

demonstrate good and bad examples of modularization.   

Likewise, development assurance approaches such as the System Security 

Engineering – Capability and Maturity Model (SSE-CMM http://www.sse-cmm.org) 

attempt to address the problem by enhancing the quality of the system that produces the 

software.  The following quote is extracted from the SSE-CMM Vision statement 

(available at http://www.sse-cmm.org/vision.htm)  

The SSE-CMM, applied to the entire life cycle of products and systems, 
will maximize synergy between life cycle phases, minimize effort within 
each phase, eliminate duplication of effort, and result in more secure 
solutions, with greater assurance and at much lower cost. 

These are certainly desirable qualities for any development effort.  However, as in 

most of the quality-driven models, the SSE-CMM cannot reliably address the threat of 

subversion because the model assumes that all members of the team share the goal of 

producing secure software.  If a subverter is operating covertly on the development team, 

the model breaks down.   

C. VERIFIABLE PROTECTION 
As stated earlier, we have known for a long time how to build systems in a way 

that allows us to convince ourselves that it is free of artifices.  The highest assurance 

rating (TCSEC A1) is based on criteria that address these issues.  However, we must be 

careful in the use of the term high assurance as there are many vendors making this claim 

of products that simply do not come close to these standards.  The line between the 

colloquial use of the terms high, medium and low assurance are vague and the terms are 
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easily tossed about in product sales literature and at demonstration booths for nearly 

every product aimed at security.  What are required are systems that not only meet sound 

security criteria, but that are also built in such a way that we can verify the protection 

mechanisms they provide.  Accordingly, we shall use the term verifiable protection from 

the TCSEC (DoD 5200.28-STD) to describe a system that is resilient to subversion.  We 

will discuss verifiable protection in detail in the following sections. 

Take for example the 72-bit adder with carry example (see Section V.B.2 

“Security Test and Evaluation (ST&E) Will Fail to Reveal an Artifice”).  Dijkstra used 

this example to illustrate the absurdity of building a 72-bit adder with carry as a 

monolithic piece of hardware.  In practice, designers would build this device by 

constructing 72 one-bit adders with carry and then linking them together properly.  Then, 

testing of the entire system amounts to checking each of the 72 individual components for 

proper handling of the four possible inputs and properly passing any overflow condition 

to the next higher order component.  From this perspective, the system has been reduced 

to modules that can be completely tested.  As a result, the operation of the device as a 

whole has become verifiable and we can claim with high assurance that it will properly 

handle every possible input without actually testing every possible input. 

The simplicity of this example may leave the reader with doubts that such an 

approach can scale to a large information system.  A slightly more complex example is 

presented in Dijkstra (1968).  In the design of the “THE”-Multiprogramming System (a 

small operating system), he showed that “…it is possible to design a refined 

multiprogramming system in such a way that its logical soundness can be proved a priori 

and its implementation can admit exhaustive testing.”  The THE system and the 72-bit 

adder example are alike in that to test the THE system (or any general purpose computer) 

at the system interface with no knowledge of how it was constructed would require 

feeding all possible programs into the system.  He goes on to state that testing must only 

involve what is relevant and what is relevant can be decided only if the internal structure 

of the system is known.  The fact that the set of relevant test cases was small enough to 

be exhaustively tested was a result of the modular nature of the design.  In the context of 

our problem, recall that one requirement of the Reference Monitor Concept (Section I.C.  

“Historical Background”), is that security kernel design must be small enough to be the 

 42 



subject of analysis and tests to assure that it is correct.  The exhaustive testing of the 

security kernel should be possible if it is built with a modular architecture. 

1. Properties of Verifiable Protection 
A system offering verifiable protection will provide a high assurance that its 

security properties are correct, complete, and allow nothing beyond their specification.  

Additionally, it will have the following properties: 

• Designed to have no exploitable security flaws 

• Enforce security policies on information flow, thereby bounding 
the damage of malicious software (e.g., Trojan Horses). 

• Built to be subject to third party inspection and analysis to confirm 
the protections are correct, complete and do nothing more than 
advertised (i.e., no trap doors). 

One of the primary risks that is addressed by verifiable protection is the risk that trap 

doors may be present which give an attacker the ability to bypass the system’s normal 

security controls.  As stated earlier, the entire system cannot be considered verifiable.  

The size and complexity of the typical system today prohibit such an undertaking.  The 

properties of the system that must be verifiable should be limited to the interface at the 

Reference Validation Mechanism (RVM)  (or the boundary of the security kernel). 

There must be a formal model describing these properties, which can be 

mathematically proven to be sound and correct.  An example of such a model is the Bell-

LaPadula access control policy model (Bell and LaPadula, 1975).  With verifiable 

protection, all of the operations at the boundary of the RVM must correspond to one or 

more rules that represent the security policy.  Figure 6.  shows the work that must be 

performed in building a system that provides verifiable protection.  The formal model 

describes the security policy.  This is mapped to a Formal Top Level Specification 

(FTLS) which is mathematically proven to be sound.  The mapping continues down to 

any engineering specifications and down through the implementation of the hardware and 

software through code correspondence.  Finally, the executable code (binaries) are shown 

to map to the source code by analysis of the tools used to generate them.  Once this 

correspondence has been shown, the soundness and correctness of the system’s security 

controls follows by transitivity.   
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Figure 6.   Correspondence of Security Policy to Implementation (After NCSC-TG-010) 

 

A system designed in this way will eliminate any opportunity for the attacker to 

plant his artifice as any function that does not relate back to the policy model will be 

discovered in the correspondence mapping. 

2. Requirements for Verifiable Protection 
In order to obtain verifiable protection in a system, it must not only be verifiable, 

but it also must be possible to audit the correct functioning of the system after the fact.  

The TCSEC (DoD 52100.28-STD) requires the following for a system to be verifiable 

and auditable: 

 

In order for a design and development to result in technology that is 
“verifiable” … it must include at least: 

• An information security policy 
• A formal mathematical model of the security policy 
• A formal top level specification (FTLS), having a precise syntax 

and well defined semantics, that accurately and completely 
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describes the boundary of the RVM in terms of exceptions, error 
messages and effects 

• A design that uses a complete, conceptually simple protection 
mechanism with precisely defined semantics 

• An implementation that makes effective use of abstraction, 
layering and information hiding.   

 

For a system’s security to be “auditable”, the development process 
provides evidence necessary for an effective after-the-fact security 
assessment including at least: 

• A formal proof that the FTLS implements the security policy 
model. Third parties can repeat such a proof.  This is in contrast to 
a descriptive top-level specification (DTLS), which would require 
third party participation in the design process to conclude the 
specification implements the model. 

• A mapping of all source code within the Reference Validation 
Mechanism (RVM) to the FTLS. It is the design process, 
particularly the production of a formal specification and a layered  
implementation that incorporates information hiding, that makes 
this possible.  This provides evidence that the implementation is 
free errors, including trap doors. 

• A demonstration that the implementation is consistent with the 
FTLS 

• Functional testing in which the advertised features of a system are 
tested for correct operation, and it is confirmed 

• An information flow analysis of the FTLS 
• Configuration management supporting a reliable rebuilding of the 

security mechanisms. This requires configuration management for 
hardware, software, firmware, formal specifications and all tools 
used to rebuild the system. There must exist a protected master 
copy of all material used to generate the RVM. 

• Trusted distribution allowing confirmation that a given instance of 
the security mechanisms matches an authoritative reference point 

 
D. CHAPTER SUMMARY 

We have shown that the only viable way to mitigate or eliminate the risk of 

subversion is by removing the opportunity that a would-be subverter might have to plant 

an artifice during all phases of the system lifecycle.  Through proper physical and other 

security controls, unauthorized individuals can be denied this opportunity to some extent.  

However, a much more practical and effective approach is verifiable protection.  This is 

the only way one can be sure that the system correctly and completely implements the 

 45 



protection mechanisms and does nothing beyond its specification.  Furthermore, 

verifiable protection provides the ability to audit the system and ensure that a delivered 

system has not been altered at some post-production phase of the system lifecycle. 
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VII. CONCLUSIONS AND FUTURE WORK 

We have shown that the risk of subversion is one that must be addressed in order 

to have any justification for trust in our information systems.  Decision makers 

responsible for security of information technology should consider this threat when 

deploying systems.  We have also shown that the current trends in approaches to 

“proving” security are inadequate at best.  Penetration tests, add-on third party products, 

layered defenses and security patches are largely accepted as a means to providing proper 

security – a practice known long ago to be irrational.  This results in a situation that may 

be even more dangerous than having poor security in the first place, as decision makers 

operate under the flawed belief that their system provides adequate security or that any 

breach will be discovered through layered defenses. 

We have also known for some time how to address the threat of subversion.  

Evaluation criteria tried and tested over the past 15 years have been applied to 

successfully provide appropriate security from a technological standpoint.  That these 

approaches have fallen into disfavor was foreshadowed in an early work by Karger and 

Schell (1973): 

We are confident that from the standpoint of technology there is a good 
chance for secure shared systems in the next few years.  However, from a 
practical standpoint the security problem will remain as long as 
manufacturers remain committed to current system architectures, produced 
without a firm requirement for security.  As long as there is support for ad 
hoc fixes and security packages for these inadequate designs, and as long 
as the illusory results of penetration teams are accepted as a demonstration 
of computer security, proper security will not be a reality.  

Much has changed since these early days of computer security.  The source of 

threats has multiplied significantly with the advent of the Internet.   Furthermore, our 

“…reliance on … technology is increasing much more quickly than our ability to deal 

with the also increasing threats to information security” (Landoll, Schaefer, and 

Williams, 1995).  We continue to nurture a vast industry that provides security as an 

afterthought in the form of add-on applications that offer little or no assurance.  We spend 

unquantifiable resources reacting to the latest known vulnerability by applying hastily 

 47 



developed patches, which are tested predominantly by placing them in operation.  What 

we really need is assurance.  Not the assurance one hears about at trade shows or in 

product sales literature, but a verifiable level of protection, which offers not only 

protection from the amateur, everyday exploit but protection from the professional 

attacker as well.  As it has been attested throughout this paper, we have known how to 

offer this level of protection for more than thirty years.  However, these techniques have 

seen little application.  The few systems that were built were proprietary and lessons 

learned during their development and in evaluating them is largely undocumented.  

Knowledge of how to build such systems exists for the most part in a select few 

individuals who are now scattered among various other pursuits.  We must begin to look 

at these techniques again now - not only for the undeniable fact that the current security 

posture of the United States demands it, but also for the fact that if we do not begin soon, 

we may loose much of the costly knowledge we attained in those early years. 

Already, there are trends that indicate that this expertise is slipping away from the 

United States. Criteria-based security evaluations are now conducted against criteria 

specifications  written in the language of the Common Criteria for Information Security 

Evaluation (CC) (see http://www.commoncriteria.org).  Under the current scheme, a 

Mutual Recognition Arrangement exists between the United States, Canada, Great 

Britain, and other European member nations to recognize evaluations conducted at the 

lower assurance levels.  This was in part an effort to appease vendors who did not want to 

spend resources having their products evaluated multiple times in each nation.  However, 

inspection of the evaluated products list 

(http://www.commoncriteria.org/epl/ProductType/all.html) indicates that the majority of 

the evaluations above EAL4 are being conducted in Europe.   In fact, while the original 

mutual recognition arrangement extends up to and including Evaluated Assurance Level 

4 (EAL4), a set of the European nations have extended this arrangement between 

themselves, such that evaluations are recognized up to and including EAL7.10  Therefore, 

a vendor wishing to have a product certified at EAL7 will get more market recognition 

for the evaluation by having the evaluation conducted in Europe.  To obtain certification 

                                                 
10 See http://www.cesg.gov.uk/assurance/iacs/itsec/index.htm. 
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in the United States, he must complete a separate evaluation in one of the United States 

Labs. 

In an attempt to rescue the lessons learned in past high assurance development 

projects, the Naval Postgraduate School is embarking on an effort to develop an open 

source high assurance security kernel that offers verifiable protection.  This effort will be 

completely open to observation and participation and will hopefully result in an open 

source product made available to be used as the foundation for any product that can be 

built on top of it. 

 The time for this type of project is now.  We cannot afford to wait until a 

devastating attack occurs at which time, the corporate knowledge gained in the building 

of products that address the subversion threat may no longer exist.  It is critical that those 

responsible for the security of information technology systems give this threat due 

consideration. 
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APPENDIX  

This appendix provides a basic introduction to Internet protocols to aid readers in 

understanding the subversion examples presented in Chapters II-IV. 

The Internet is one of the most widely used and widely understood forms of 

network communication.  It is often described as a massive “cloud” through which 

computers pass data to each other in the form of binary 1’s and 0’s modulated into an 

electrical signal.  The Internet uses pre-defined protocols to make communication on the 

Internet proceed smoothly.  The most common is the Transmission Control 

Protocol/Internet Protocol (TCP/IP), which defines how these connections get 

established, maintained, and torn down.  Data are passed around the network 

encapsulated in packets.  These packets contain the data (e-mail, documents, pictures, 

etc.) as well as information about the data (its origin, destination, size, etc.).  This data 

about the data or metadata are formed into well-defined headers.  Packets are sent from 

one computer to another along a path in the network.  Intelligent nodes analyze 

information contained in the header and decide where to send the packet next thus 

determining its path through the network.  Eventually, the packet arrives at a node that 

knows where the destination is and the path is complete.  This method of connecting one 

end to another is known as packet switching.  It is distinguished from circuit switching in 

which a physical end-to-end connection is built by electronic circuits and remains 

connected for the duration of the communication.  Circuit switching is the method used in 

telephone communications. 

The network protocols are organized into a hierarchical layering as shown in 

Figure 1. Layers of the TCP/IP Protocol.  An application (such as an e-mail program 

generates an e-mail message).  The data that comprise this message are formed in such a 

way that the e-mail program on the receiving side understands how to interpret the data 

and display the message.  Before the message can be sent out however, it must be formed 

into a packet.  So the e-mail program passes it down to the next layer which is either 

Transmission Control Protocol (TCP) or User Datagram Protocol (UDP).  The difference 

between TCP and UPD is not critical here, but this layer is responsible for defining which 

 53 



application is responsible for the datagram portion of the packet and for guaranteeing that 

the information is received correctly.   The packet now contains the data generated by the 

e-mail program and the TCP or UDP header.  This then becomes the datagram for the 

next level down – the Internet Protocol IP layer, which will add the IP header.  The IP 

header contains, among other things, identifying information for the origin and 

destination computers.  After the IP layer is the Link Layer.  While the IP layer gets the 

packet from the origin to the ultimate destination, the link layer gets the packet from node 

to node.  Finally, the Physical Layer deals with the physical medium and how signals 

travel through it. 

A p p lic a tio n  T e ln e t, F T P , e -m a il,  e tc . 

T ra n s p o rt 

N e tw o rk  

L in k  

T C P , U D P  

IP , IC M P , IG M P  

D e v ic e  d rive r a n d  in te rfa c e  c a rd  

 

Figure 1.  Layers of the TCP/IP Protocol Suite (from Stevens, 1994) 
On the receiving end, the packet is passed up the stack in reverse order.  At each 

level, the header is stripped off and analyzed until the data is passed to the application 

(e.g. the e-mail program that will display the e-mail message).  As the packet is passed up 

this stack, it is checked for integrity (in the event that a glitch causes data modification) 

by comparing a filled-in the header called the checksum with the datagram portion of the 

packet.  If the checksum is invalid, the packet must be retransmitted (in the case of TCP), 

or just discarded and forgotten about (as in the case of UDP). 

The trigger in the NFS example (see Chapter II. “High Level Discussion of the 

Network File Server (NFS) Experiment”) is a UDP packet with an invalid checksum of a 

predefined value.  When a UDP packet with a bad checksum is received by the subverted 

system, it discards the packet normally, but also checks to see if the value in the 

checksum field is one of the predefined triggers.  If so, it triggers the artifice and then 

discards the packet. 
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